
Drag and lift 

In Chapters 7 and 8 our study concerned ‘internal flow’ enclosed by solid 
walls. Now, how shall we consider such cases as the Aight of a baseball or 
golf ball, the movement of an automobile or when an aircraft flies in the air, 
or where a submarine moves under the water? Here, flows outside such solid 
walls, i.e. ‘external flows’, are discussed. 

Generally speaking, flow around a body placed in a uniform flow develops a 
thin layer along the body surface with largely changing velocity, Le. the 
boundary layer, due to the viscosity of the fluid. Furthermore, the flow 
separates behind the body, discharging a wake with eddies. Figure 9.1 shows 
the flows around a cylinder and a flat plate. The flow from an upstream point 
a is stopped at point b on the body surface with its velocity decreasing to 
zero; b is called a stagnation point. The flow divides into the upper and lower 
flows at point b. For a cylinder, the flow separates at point c producing a 
wake with eddies. 

Let the pressure upstream at a, which is not affected by the body, be pbo, 
the flow velocity be U and the pressure at the stagnation point be p o .  Then 

(9.1) P u2 
P o = P o a + T  

Fig. 9.1 Flow around a body 
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Whenever a body is placed in a flow, the body is subject to a force from the 
surrounding fluid. When a flat plate is placed in the flow direction, it is only 
subject to a force in the downstream direction. A wing, however, is subject to 
the force R inclined to the flow as shown in Fig. 9.2. In general, the force R 
acting on a body is resolved into a component D in the flow direction U and 
the component L in a direction normal to U. The former is called drag and 
the latter lift. 

Drag and lift develop in the following manner. In Fig. 9.3, let the pressure 
of fluid acting on a given minute area dA on the body surface be p, and the 
friction force per unit area be z. The force pdA due to the pressure p acts 
normal to dA, while the force due to the friction stress z acts tangentially. 
The drag D,, which is the integration over the whole body surface of the 
component in the direction of the flow velocity U of this force p dA, is called 
form drag or pressure drag. The drag D/ is the similar integration of zdA 
and is called the friction drag. D, and D/ are shown as follows in the form of 
equations: 

D,= pdAcos8 (9.2) 

D - zdAsin8 (9.3) 

J, 
4, 

The drag D on a body is the sum of the pressure drag D, and friction drag 
Or, whose proportions vary with the shape of the body. Table 9.1 shows the 
contributions of D, and D, for various shapes. By integrating the component 
of pd.4 and ~ d . 4  normal to 17, the lift L is obtained. 

Fig. 9.2 Drag and lift Fig. 9.3 Force acting on body 

9.3.1 Drag coefficient 

The drag D of a body placed in the uniform flow U can be obtained from eqns 
(9.2) and (9.3). This theoretical computation, however, is generally difficult 
except for bodies of simple shape and for a limited range of velocity. 
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Table 9.1 Contributions of &and Df for various shaoes 

Therefore, there is no other way but to rely on experiments. In general, drag 
D is expressed as follows: 

(9.4) 
PU‘ D = CDA- 

2 

where A is the projected area of the body on the plane vertical to the 
direction of the uniform flow and C, is a non-dimensional number called 
the drag coefficient. Values of C, for bodies of various shape are given in 
Table 9.2. 

9.3.2 Drag for a cylinder 

Ideal fluid 
Let us theoretically study (neglecting the viscosity of fluid) a cylinder placed 
in a flow. The flow around a cylinder placed at right angles to the flow U of 
an ideal fluid is as shown in Fig. 9.4. The velocity uo at a given point on the 
cylinder surface is as follows (see Section 12.5.2): 

v8 = 2U sin0 (9.5) 

Putting the pressure of the parallel flow as pm, and the pressure at a given 
point on the cylinder surface as p, Bernoulli’s equation produces the 
following result: 

P u2 P d  pm + - = p + - 
P-Pm= 

2 2 
p(U2 - Ui) pu’ -- - 2 (1  -4sin28) 

2 

(9.6) -- ’-Po, - 1 -4sinz0 
PU2/2 
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Table 9.2 Drag coefficients for various bodies 
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Fig. 9.4 Flow around a cylinder 

Fig. 9.5 Pressure distribution around cylinder: A, Re = 1 .I x 10’ < Re,; B, Re = 6.7 x 1 O5 > Re,; 
C, Re = 8.4 x lo6 > Re, 

This pressure distribution is illustrated in Fig. 9.5, where there is left and 
right symmetry to the centre line at right angles to the flow. Consequently the 
pressure resistance obtained by integrating this pressure distribution turns 
out to be zero, i.e. no force at all acts on the cylinder. Since this phenomenon 
is contrary to actual flow, it is called d’alembert’s paradox, after the French 
physicist (1717-83). 
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Wscous fluid 
For a viscous flow, behind the cylinder, for very low values of Re < 1 
(Re = Ud/u),  the streamlines come together symmetrically as at the front 
of the cylinder, as indicated in Fig. 9.4. If Re is increased to the range 
2 - 30 the boundary layer separates symmetrically at position a (Fig. 9.6(a)) 
and two eddies are formed rotating in opposite directions.' Behind the eddies, 
the main streamlines come together. With an increase of Re, the eddies 
elongate and at Re = 40 - 70 a periodic oscillation of the wake is observed. 
These eddies are called twin vortices. When Re is over 90, eddies are 
continuously shed alternately from the two sides of the cylinder (Fig. 9.6(b)). 
Where lo2 < Re < lo5, separation occurs near 80" from the front stagnation 
point (Fig. 9.6(c)). This arrangement of vortices is called a Karman vortex 
street. Near Re = 3.8 x lo5, the boundary layer becomes turbulent and the 
separation position is moved further downstream to near 130" (Fig. 9.6(d)). 

For a viscous fluid, as shown in Fig. 9.6, the flow lines along the cylinder 
surface separate from the cylinder to develop eddies behind it. This is 
visualised in Fig. 9.7. For the rear half of the cylinder, just like the case of a 
divergent pipe, the flow gradually decelerates with the velocity gradient 
reaching zero. This point is now the separation point, downstream of which 
flow reversals occur, developing eddies (see Section 7.4.2). This separation 
point shifts downstream as shown in Fig. 9.6(d) with increased Re = U d / u  (d: 
cylinder diameter). The reason is that increased Re results in a turbulent 
boundary layer. Therefore, the fluid particles in and around the boundary 
layer mix with each other by the mixing action of the turbulent flow to make 

Fig. 9.6 Flow around a cylinder 

' Streeter, V.L., Handbook of Fluid Dynamics, (1961), McGraw-Hill, New York. 
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Fig. 9.7 Separation and Karman vortex sheet (hydrogen bubble method) in water, velocity 2.4cm/s, 
Re= 195 

separation harder to occur. Figure 9.8 shows a flow visualisation of the 
development process from twin vortices to a Kkrman vortex street. The 
Reynolds number Re = 3.8 x lo5 at which the boundary layer becomes 
turbulent is called the critical Reynolds number Re,. 

The pressure distribution on the cylinder surface in this case is like curves 
A, B and C in Fig. 9.5 with a reduced pressure behind the cylinder acting to 
produce a force in the downstream direction. 

Figure 9.9 shows, for a cylinder of diameter d placed with its axis normal 
to a uniform flow U, changes in drag coefficient C, with Re and also 

Fig. 9.8 Flow around a cylinder 
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Fig. 9.9 Drag coefficients for cylinders and other colurnn-shaped bodies 

comparison with oblong and streamlined columns.* When Re = lo3 - 2 x lo5, 
C ,  = 1 - 1.2 or a roughly constant value; but when Re = 3.8 x lo5 or so, C ,  
suddenly decreases to 0.3. To explain this phenomenon, it is surmised that 
the location of the separation point suddenly changes as it reaches this Re, as 
shown in Fig 9.6(d). 

G. I. Taylor (1886-1975, scholar of fluid dynamics at Cambridge 
University) calculated the number of vortices separating from the body every 
second, i.e. developing frequency f for 250 < Re < 2 x lo5, by the following 
equation: 

f=0.198- ”( d 1-- lib?) (9.7) 

f d / U  is a dimensionless parameter called the Strouhal number S t  (named 
after V. Strouhal (1850-1922), a Czech physicist; in 1878, he first investigated 
the ‘singing’ of wires), which can be used to indicate the degree of regularity 
in a cyclically fluctuating flow. 

When the Karma, vortices develop, the body is acted on by a cyclic force 
and, as a result, it sometimes vibrates to produce sounds. The phenomenon 
where a power line ‘sings’ in the wind is an example of this. 

In general, most drag is produced because a stream separates behind a 
body, develops vortices and lowers its pressure. Therefore, in order to reduce 
the drag, it suffices to make the body into a shape from which the flow does 
not separate. This is the so-called streamline shape. 

* Hoerner, S.F., Fluid Dynamic Drag, (1965), Hoerner, Midland Park, NJ. 
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9.3.3 Drag of a sphere 

The drag coefficient of a sphere changes as shown in Fig. 9.10.3 Within the 
range where Re is fairly high, Re = lo3 -2 x los, the resistance is proportional 
to the square of the velocity, and C, is approximately 0.44. As Re reaches 
3 x lo5 or so, like the case of a cylinder the boundary layer changes from 
laminar flow separation to turbulent flow separation. Therefore, C, decreases 
to 0.1 or less. On reaching higher Re, CD gradually approaches 0.2. 

Slow flow around a sphere is known as Stokes flow. From the Navier- 
Stokes equation and the continuity equation the drag D is as follows: 

D = 3npUd 
(9.8) 

CD = - Re 24 I 
This is known as Stokes' e q ~ a t i o n . ~  This coincides well with experiments 
within the range of Re < 1. 

__. 

Fig. 9.10 Drag coefficients of a sphere and other three-dimensional bodies 

9.3.4 Drag of a flat plate 

As shown in Fig. 9.11, as a uniform flow of velocity U flows parallel to a flat 
plate of length I ,  the boundary layer steadily develops owing to viscosity. 

3 Streeter, V.L., Handbook ofFluid Dynamics, (1961), McGraw-Hill, New York. 
' Lamb, H., Hydrodynamics, 6th edition, (1932), Cambridge University Press. 
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Fig. 9.11 Flow around a flat plate 

Now, set the thickness of the boundary layer at a distance x from the leading 
edge of the flat plate to 6. Consider the mass flow rate of the fluid pudy 
flowing in the layer dy within the boundary layer at the given point x. From 
the difference in momentum of this flow quantity pudy before and after 
passing over this plate, the drag D due to the friction on the plate is as 
follows: 

D = ~ u ( U  - u)dy (9.9) s: 
Now, putting the wall face friction stress as zo, and since dD = ~ ~ d x ,  then 

from above 

(9.10) 
dD 
dx dx 

zo = - = pA[ u(V - u)dy 

Laminar boundary layer 
Now, treating the distribution of u as a parabolic velocity distribution like 
the laminar flow in a circular pipe, 

(9.1 1) q = $  Y U  ,=2q-q 2 

Substituting the above into eqn (9. lo), 

(9.12) 
zo = p V 2 ~ / o ~ ( 1  d6 ' u  -i)dq=0.133pU2- d6 

dY 

On the other hand, 

(9.13) T o = P l d y l  du = 2 g  PV 
y=o 

Therefore, from eqns (9.12) and (9.13), 
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Fig. 9.12 Changes in boundary layer thickness and friction stress along a flat plate 

P 6d6 = 15.04-d~ 
PU 

62 V - 15.04-x + c 
2 U 

From x = 0 and 6 = 0, c = 0. Therefore 

(9.14) 
6 = 5 . 4 8 p  = -x 5 48 

u a  
However, since R = UJv ,  substitute eqn (9.14) into (9.13), 

zo = O . 3 6 5 g  = 0.730$& (9.15) 

As shown in Fig. 9.12, the boundary layer thickness 6 increases in proportion 
to ,E, while the surface frictional stress reduces in inverse proportion to 

The friction resistance for width b of the whole (but one face only) of that 
fi. 
plate is expressed as follows by integrating eqn (9.15): 

I 

D = r,dx = 0.73 ,/a (9.16) lo 
(9.17) P u2 D = C 1 -  

f 2  
Defining the friction drag coefficient as C,, this becomes 

(9.18) 

where R = Ul/v .  The above equations roughly coincide with experimental 
values within the range of R c 5 x lo5. 

Turbulent boundary layer 
Whenever Rl is large, the length of laminar boundary layer is so short that 
the layer can be regarded as a turbulent boundary layer over the full length 
of a flat plate. Now, assume the distribution of u to be given by 

1.46 c, = - %m 
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Fig. 9.13 Friction drag coefficients of a flat plate 

u - (f> ‘I7= ,+I7 (9.19) 
U -  

like turbulent flow in a circular pipe, and the following equations are 
obtained:’ 

(9.20) 

z,, = 0.029pU2($) X (9.21) 

(9.22) D =  

C, = 0.072R[”’ (9.23) 

The above equations coincide well with experimental values within the range 
of 5 x los < R, < 10’. From experimental data, 

C, = 0.074R,’/’ (9.24) 

gives better agreement. 
In the case where there is a significant length of laminar boundary layer 

at the front end of a flat plate, but later developing into a turbulent boundary 
layer, eqn (9.12) is amended as follows: 

0 . 3 7 ~  6 = -  
Rx’l’ 

115 

0.036pU21 
R;15 

(9.25) 
0.074 1700 
R;” RI 

c,=--- 

The relationship of C, with R, is shown in Fig. 9.13. 

’ Streeter, V. L., Handbook of Ruid Dynamics, (1961), McGraw-Hill, New York. 
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9.3.5 Friction torque acting on a revolving disc 

If a disc revolves in a fluid at angular velocity o, a boundary layer develops 
around the disc owing to the fluid viscosity. 

Now, as shown in Fig. 9.14, let the radius of the disc be r,, the thickness 
be by and the resistance acting on the elementary ring area 2nrdr at a given 
radius ro be dF. Assuming that dF is proportional to the square of the 
circular velocity r o  of that section, and the friction coefficient is f, the torque 
IT; due to this surface friction is as follows: 

dF=f- p(rw)2 2zr  dr 
2 

or 

nf (9.26) T - rdF =-ppw’r; 

Now, putting the friction coefficient at the cylindrical part of the disc to 

ro 

‘ - I=, 5 

f and the resistance acting on it to F, 

Ff =r- P(row)2 2zr0b 
2 

Torque T2 due to this surface friction is as follows: 
T2 = z f p o 2 r : b  (9.27) 

Assuming f = ff , the torque T needed for rotating this disc is 

T = 2IT; -I- & = nfpo2r!  -ro + b (9.28) c 1 

Fig. 9.14 A revolving disc 
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and the power L needed in that case is 

L = To = nfpo3r: -ro + b (9.29) 

These relationships are used for such cases as computing the power loss 
c ) 

due to the friction of the impeller of a centrifugal pump or water turbine. 

9.4.1 Development of lift 

Consider a case where, as shown in Fig. 9.15, a cylinder placed in a uniform 
flow U rotates at angular velocity o but without flow separation. Since the 
fluid on the cylinder surface moves at a circular velocity u = roo, sticking to 
the cylinder owing to the viscosity of the fluid, the flow velocity at a given 
point on the cylinder surface (angle e) is the tangential velocity ug caused by 
the uniform flow U plus u. In other words, 2U sin 8 + roo.  

Putting the pressure of the uniform flow as pm, and the pressure at a given 
point on the cylinder surface as p ,  while neglecting the energy loss because 
it is too small, then from Bernoulli’s equation 

pm +- U’ = p + - ( 2 ~ s i n 0  + roo>’ P P 
2 2 

Therefore 

(9.30) 

Consequently, for unit width of the cylinder surface, integrate the component 
in the y direction of the force due to the pressure p - po3 acting on a minute 
area ro de, and the lift L acting on the unit width of cylinder is obtained: 

)2 

-- p-pm - 1 - (2(isinO+row 
PU2/2 U 

Fig. 9.15 Lift acting on a rotating cylinder 
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4 2  

L = 2  -(p-p,)rodBsin8 
1 n / 2  ,'I sin 8 dB 

= -ropu2r2 [I - ( 2U sin u 8 + r o o  

= - r o p U 2 r  [l - (k) r w  2 - z s i n B - 4 s i n 2 8  4 r o .  sinBd8 

= 2m$opU = 27cr,up~ 

- X I 2  

(9.31) 

The circulation around the cylinder surface when a cylinder placed in a 

1 - 4 2  U 

uniform flow U has circular velocity u is 

r = 27wOu 

Substituting the above into eqn (9.31), 

L = pur (9.32) 

This lift is the reason why a baseball, tennis ball or golf ball curves or slices 
if spinning.6 This equation is called the Kutta-Joukowski equation. 

In general, whenever circulation develops owing to the shape of a body 
placed in the uniform flow U (e.g. aircraft wings or yacht sails) (see Section 
9.4.2), lift L as in eqn (9.32) is likewise produced for the unit width of its 
section. 

9.4.2 Wing 

Of the forces acting on a body placed in a flow, if the body is so 
manufactured as to make the lift larger than the drag, it is called a wing, 
aerofoil or blade. 

The shape of a wing section is called an aerofoil section, an example of 
which is shown in Fig. 9.16. The line connecting the leading edge with the 
trailing edge is called the chord, and its length is called the chord length. The 
line connecting the mid-points of the upper and lower faces of the aerofoil 

6 The reason why the golf ball surface has many dimple-like hollows is to reduce the air 
resistance by producing turbulence around the ball, and to produce an effective lift while keeping 
a stable flight by making the air circulation larger (see Plate 4). The number of rotations (called 
spin) per second of a golf ball can be 100 or more. 
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PU2 - L = C J -  2 

2 
D=CDl-  P u2 

2 PU2 M = C , l  - 2 ,  

b (9.33) 
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Fig. 9.17 Characteristic curves of a wing 

the lift coefficient C,  increases in a straight line. As it further increases, 
however, the increase in C,  gradually slows down, reaches a maximum value 
at a certain point, and thereafter suddenly decreases. This is due to the fact 
that, as shown in Fig. 9.18, the flow separates on the upper surface of the 
wing because the angle of attack has increased too much. This phenomenon 
is completely analogous to the separation occurring on a divergent pipe or 
flow behind a body and is called stall. Angle a at which C,  reaches a 
maximum is the stalling angle and the maximum value of C ,  is the maximum 
lift coefficient. Figure 9.19 shows the characteristic with changing wing 
section. 

Fig. 9.18 Flow around a stalled wing 
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Fig. 9.19 Aerofoil section and characteristic 

Figure 9.20 shows a wing characteristic by putting C, on the abscissa and 
C, on the ordinate, and is called the lift-drag polar, from which the angle of 
attack maximising the lift-drag ratio C L / C ,  can easily be found. 

The reason why a wing produces lift is because a circulatory flow is 
produced just like for a rotating cylinder. In the case of a wing section, the 
circulatory flow is produced because the trailing edge is sharpened. A wing 
moves from a stationary state initially as shown in Fig. 9.21(a). Owing to its 
behaviour as potential flow, a rear stagnation point develops at point A. 
Consequently, the flow develops into a flow running round the trailing edge 
B. Since the trailing edge is sharp, however, the flow is unable to run round 
the wing surface but separates from it producing a vortex as shown in (b) of 

Fig. 9.20 Characteristic curve of a wing (liftdrag curve) 
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Fig. 9.21 Development of circulation around aerofoil section 

the same figure. This vortex moves backwards being driven by the main flow. 
The flow on the upper surface of the wing is drawn towards the trailing edge, 
which itself develops into a stagnation point, and thus the flow is now as 
shown in (c) of the same figure. As one vortex is produced, another vortex of 
equal strength is also produced since the flow system as a whole should be 
in a net non-rotary movement. Therefore a circulation is produced against 
the start-up vortex as if another vortex of equal strength in counterrotation 
had developed around the wing section. The former vortex is called a starting- 
up vortex because it is left at the starting point; the latter assumed vortex is a 
wing-bound vortex. The situation where the flow runs off the sharp trailing 
edge of a wing as stated above is called the Kutta condition or Joukowski’s 
hypothesis. Figure 9.22 shows the visualised picture of a starting vortex. 

The blades of a blower, compressor, water wheel, steam turbine or gas 
turbine of the axial flow type are distributed radially in planes around the 
shaft and the blade sections of the same shape are found arranged at a certain 
spacing as shown in Fig. 9.23. This is called a cascade. 

The action of a cascade is to change the flow direction with small loss by 
using the necessary stagger angle. 

The lift acting on a blade is expressed by pu,T from eqn (9.32) where u, 
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Fig. 9.22 Starting vortex (courtesy of the National Physical Laboratory) 

Fig. 9.23 Cascade: v,, v,, velocities at infinity in front and behind the cascade; CI,, inlet angle (angle 
of velocity v, to axial direction); a,, exit angle (angle of velocity v, to axial direction); I, chord length; 
t, space between blades; //t, solidity; /3, stagger angle; 0 = CI, - a,, turning angle of flow 

represents the mean flow velocity of u, and u2. The magnitude of the 
circulation around a blade in a cascade is affected by the other blades giving 
less lift compared with a solitary blade. 

For the same blade section, setting the lifts of a solitary blade and a 
cascade blade to Lo and L respectively, 

k = L/Lo (9.34) 

k is called the interference coefficient. It is a function of l / t  and /?, and is near 
one whenever l/t  is 0.5 or less. 

According to Bernoulli’s principle, as the velocity increases, the pressure 
decreases correspondingly. In the forward part on the upper surface of a wing 
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Fig. 9.24 An aerofoil section inside the flow 

section placed in a uniform flow as shown in Fig. 9.24, for example, the flow 
velocity increases while the pressure decreases. 

If a section of a body placed in liquid increases its velocity so much that 
the pressure there is less than the saturation pressure of the liquid, the liquid 
instantaneously boils, producing bubbles with cavities. This phenomenon is 
called cavitation. In addition, since gas dissolves in liquid in proportion to 
the pressure (Henry’s Law), as the liquid pressure decreases, the dissolved gas 
separates from the liquid into bubbles even before the saturation pressure is 
reached. When these bubbles are conveyed downstream where the pressure is 
higher they are suddenly squeezed and abnormally high pressure  develop^.^ 
At this point noise and vibration occur eroding the neighbouring surface and 
leaving on it holes small in diameter but relatively deep, as if made by a 
slender drill in most cases. These phenomena as a whole are also referred to 
as cavitation in a wider sense. 

The blades of a pump or water wheel, or the propeller of a boat, are 
sometimes destroyed by such phenomena. They can develop on liquid- 
carrying pipe lines or on hydraulic devices and cause failures. 

The saturation pressures at various temperatures are shown in Table 9.3, 
while the volume ratios of air soluble in water at 1 atm are given in Table 9.4. 

When an aerofoil section is placed in a flow of liquid, the pressure 
distribution on its surface is as shown in Fig. 9.25. As the cavity grows, the 
upper pressure characteristic curve lowers while vibration etc. grow. When 
the liquid pressure is low and the flow velocity is large, the cavity grows 
further. When it grows beyond twice the chord length, the flow stabilises, 
with noise and vibration reducing. This situation is called supercavitation, 
and is applied to the wings of a hydrofoil boat. 

Let the upstream pressure not affected by the wing be pm, the flow velocity 
U and the saturation pressure p,,.  When the pressure at a point on the wing 
surface or nearby has reached p,,, cavitation develops. The ratio of pm - p,, to 
the dynamic pressure is expressed by the following equation: 

’ According to actual measurements, a pressure of 100-200 atmospheres, or sometimes as high 
as 500 atmospheres, is brought about. 
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Table 9.3 Saturation pressure for water 

Temp. ("C) Pa Temp. ("C) Pa 

0 608 50 12 330 
10 1226 60 19 920 
20 2334 70 31 160 
30 4236 80 47 360 
40 7375 100 101 320 

Table 9.4 Solubility of air in water 

Temp.("C) 0 20 40 60 80 100 

Air 0.0288 0.0187 0.0142 0.0122 0.0113 0.011 1 

Fig. 9.25 Development of cavitation on an aerofoil section 

Pm - P" 
kd = 7 (9.35) 

PU I 2  
k, in this equation is called the cavitation number. When k, is small, 
cavitation is likely to develop. 

1. Obtain the terminal velocity of a spherical sand particle dropping freely 
in water. 
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2. A wind of velocity 40m/s is blowing against an electricity pole 50cm in 
diameter and 5m high. Obtain the drag and the maximum bending 
moment acting on the pole. Assume that the drag coefficient is 0.6 and 
the air density is 1205 kg/m3. 

3. A smooth spherical body of diameter 12cm is travelling at a velocity of 
30m/s in windless open air under the conditions of 20°C temperature 
and standard atmospheric pressure. Obtain the drag of the sphere. 

4. If air at standard atmospheric pressure is flowing at velocity of 4 h / h  
along a flat plate of length 2Sm, what is the maximum value of 
the boundary layer thickness? What is it when the wind velocity is 
120 kmlh? 

5. What are the torque and the power necessary to turn a rotor as shown 
in Fig. 9.13 at 600rpm in oil of specific gravity 0.9? Assume that the 
friction coefficient f = 0.147, r, = 30cm and b = 5cm. 

6. When walking on a country road in a cold wintry wind, whistling sounds 
can be heard from power lines blown by the wind. Explain the 
phenomenon by which such sounds develop. 

7. In a baseball game, when the pitcher throws a drop or a curve, the ball 
significantly and suddenly goes down or curves. Find out why. 

8. An oblong barge of length lOm, width 2.5m and draft 0.25m is going 
up a river at a relative velocity of 1.5m/s to the water flow. What are the 
friction resistance suffered by the barge and the power necessary for 
navigation, assuming a water temperature of 20°C? 

9. If a cylinder of radius I = 3 cm and length 1 = 50cm is rotating at 
n = l000rpm in air where a wind velocity u = 10m/s, how much lift is 
produced on the cylinder? Assume that p = 1.205 kg/m3 and that air on 
the cylinder surface does not separate. 

10. A car of frontal projection area 2m2 is running at 60km/h in calm air 
of temperature 20°C and standard atmospheric pressure. What is the 
drag on the car? Assume that the resistance coefficient is 0.4. 


